SIMULATION BENCHMARK #1

WHAT IS IT?

- DEFINITION OF A SIMULATION PROTOCOL FOR EVALUATING ACTIVATED SLUDGE CONTROL STRATEGIES
 - plant layout (configuration)
 - simulation models (biological and settling)
 - model parameter values
 - influent loads and disturbances
 - test procedures
 - evaluation criteria

WHY?

- STANDARDISE THE EVALUATION PROCEDURE
 - experimental evaluation prohibitively expensive
 - innumerable perturbations in possible configurations and simulation results (i.e. model parameters, influent waste ...)
 - unbiased comparison of reported simulation results impossible

BENCHMARK HISTORY

- ORIGINALLY CONCEIVED OF BY 1ST IAWQ TASK GROUP ON RESPIROMETRY
 - aim: standardise method for the evaluation of activated sludge respirometry-based control strategies through simulation

- FORMULATION OF THE BENCHMARK ADOPTED BY ‘COST’
 - aim: a 'general' standardised method for the evaluation of activated sludge control strategies
 - EU publication

- EXTENSION BY 2ND TASK GROUP ON RESPIROMETRY
 - aim: to remain as consistent as possible with the generalised benchmark
 - IWA Scientific and Technical Report

- EXTENSION BY NEW TASK GROUP ON BENCHMARKING
 - aim: to extend BSM system to whole plant modelling
 - BSM1_LT, BSM2, BSM3...

NEW STR - 2008
IWA Task Group on "Benchmarking of Control Strategies for Wastewater Treatment Plants"

Watermatex2007 Workshop, 6 May 2007, Washington DC, USA

IWA Task Group on "Respirometry in Control of the Activated Sludge Process"

European Co-operation in the Field of Scientific and Technical Research (COST)

'COST-624' DEFINITION

DEFINED BIOLOGICAL AND SETTLING MODELS

- INTERNATIONALLY ACCEPTED ACTIVATED SLUDGE MODELS

BIOLOGICAL:
- IAWQ's ACTIVATED SLUDGE MODEL #1 (ASM#1)

SETTLING:
- TAKACS DOUBLE EXPONENTIAL SETTLING VELOCITY MODEL

NO BIOLOGICAL REACTIONS IN THE SETTLER OR RECYCLES

'DYNAMIC DISTURBANCES

DEFINED INFLUENT WASTEWATER

- 3 different 14-DAY influent files
- representations of 3 potential weather disturbances

CHARACTERISTICS:
- DIURNAL VARIATIONS IN FLOW AND CONSTITUENT CONCENTRATIONS

'RESPIROMETRY EXTENSION

SAME 5 TANKS-IN-SERIES DESIGN

PROCESS EXPANSION
- completely aerobic C-only
- completely aerobic nitrifying

STEP-FEED CAPABILITY

EFFLUENT QUALITY VARIANCE ADDED TO PERFORMANCE INDEX

'PERFORMANCE ASSESSMENT

- PLANT PERFORMANCE ASSESSMENT
 - effluent quality
 - effluent violations
 - sludge production & disposal
 - pumping & aeration energy

- CONTROLLER ASSESSMENT
 - error calculations (setpoint tracking)
 - variance in manipulated variables
SIMULATION DEFINITION

DEFINED STEP-WISE TESTING PROCEDURE:

1. **SIMULATION SET-UP IN SIMULATOR OF CHOICE** (benchmark definition is platform independent)
2. **STEADY STATE SIMULATIONS** (without any active controllers)
3. **DYNAMIC SIMULATIONS** (using dynamic influent files)
4. **DEFINED CONTROL STRATEGY IMPLEMENTATION** (NO3 and DO)
5. **EVALUATION OF USER-DEFINED STRATEGY**

NOTE: simulation output is compared to verified data at each step (excluding the last) to ensure simulator tuned correctly.

BENCHMARK SET-UP

STEP 1:
- **CHOOSE APPROPRIATE PLANT LAYOUT**
 - BASED ON CHARACTERISTICS OF CONTROL STRATEGY TO BE EVALUATED
 - CARBON REMOVAL OR NITRIFYING LAYOUT
 - DENITRIFYING LAYOUT

STEP 2:
- **CONFIGURE LAYOUT**
 - ACCORDING TO DESCRIBED FEATURES
 - **ASSIGN THE APPROPRIATE MODEL TO EACH UNIT PROCESS**
 - **INPUT THE DEFINED PARAMETER VALUES**

STEP 3:
- **OUTPUT COMPARISON**
 - (simulator tuning)
 - **VERIFIED OUTPUT**
 - (data verified using 6 different simulators and one user defined FORTRAN coded implementation)

STEP 4:
- **STEADY STATE**
 - (100 DAYS or STEADY STATE)

<table>
<thead>
<tr>
<th>Component</th>
<th>Dry Weather Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>b</sub></td>
<td>69.50 g COD m<sup>-3</sup></td>
</tr>
<tr>
<td>X<sub>in</sub></td>
<td>26.17 g COD m<sup>-3</sup></td>
</tr>
<tr>
<td>X<sub>0</sub></td>
<td>202.32 g COD m<sup>-3</sup></td>
</tr>
<tr>
<td>X<sub>S</sub></td>
<td>51.20 g COD m<sup>-3</sup></td>
</tr>
<tr>
<td>S<sub>in</sub></td>
<td>31.56 g COD m<sup>-3</sup></td>
</tr>
<tr>
<td>S<sub>0</sub></td>
<td>30.00 g COD m<sup>-3</sup></td>
</tr>
<tr>
<td>X<sub>B</sub></td>
<td>6.95 g N m<sup>-3</sup></td>
</tr>
<tr>
<td>X<sub>B</sub></td>
<td>10.59 g N m<sup>-3</sup></td>
</tr>
<tr>
<td>Q</td>
<td>18446 m<sup>3</sup> day<sup>-1</sup></td>
</tr>
</tbody>
</table>

STEP 5:
- **OUTPUT COMPARISON**
 - (simulator tuning)
 - **VERIFIED OUTPUT**
 - (data verified using 6 different simulators and one user defined FORTRAN coded implementation)
BENCHMARK SIMULATIONS

STEP 6:
- DYNAMIC INFLUENT
 (28 days, data analysis on last 7 days of output)

DYNAMIC INFLUENT FILES
(dry weather, rain weather & storm weather files)

STEP 7a:
- OUTPUT COMPARISON
 (qualitative)

QUALITATIVE COMPARISON OF DIFFERENT STRATEGIES

STEP 7b:
- OUTPUT COMPARISON
 (performance index)

USE OF THE PERFORMANCE INDEX ALLOWS FOR A MORE QUANTITATIVE COMPARISON

STRATEGY EXAMPLE

- STENSTROM AND ANDREWS (1979)

 AIM: TO DECREASE THE INFLUENCE OF A DYNAMIC INFLUENT ON EFFLUENT QUALITY
 APPROACH: CONTROL REACTOR SOUR
 METHOD: Q_{in} MANIPULATION

- TASK GROUP STRATEGY

 AIM: TO DECREASE THE VARIABILITY IN EFFLUENT QUALITY
 APPROACH: CONTROL OUR IN 5TH TANK
 METHOD: STEP-FEED MANIPULATION
PROBLEM DEFINITION

- TWO STRATEGIES
- SIMILAR, BUT DIFFERENT PROCESS AIMS
- DIFFERENT LAYOUTS
- DIFFERENT CONTROL OBJECTIVES
- DIFFERENT MANIPULATED VARIABLES

How is an unbiased comparison made?

BENCHMARK RESULTS

- SIMILARLY APPLIED ANALYSES ALLOW A MULTI-CRITERIA COMPARISON TO BE MADE
- FURTHER ANALYSES CAN BE BASED ON LOCATION SPECIFIC CRITERIA AND TERM WEIGHTING (i.e. SLUDGE PRODUCTION MORE IMPORTANT THAN PUMPING COSTS...)

<table>
<thead>
<tr>
<th>Process</th>
<th>Date</th>
<th>Initials</th>
<th>Initials</th>
<th>Initials</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process 1</td>
<td>2000</td>
<td>Initials 1</td>
<td>Initials 2</td>
<td>Initials 3</td>
<td>Initials 4</td>
</tr>
<tr>
<td>Process 2</td>
<td>2001</td>
<td>Initials 5</td>
<td>Initials 6</td>
<td>Initials 7</td>
<td>Initials 8</td>
</tr>
<tr>
<td>Process 3</td>
<td>2002</td>
<td>Initials 9</td>
<td>Initials 10</td>
<td>Initials 11</td>
<td>Initials 12</td>
</tr>
<tr>
<td>Process 4</td>
<td>2003</td>
<td>Initials 13</td>
<td>Initials 14</td>
<td>Initials 15</td>
<td>Initials 16</td>
</tr>
</tbody>
</table>

FEATURES RECAP

- DEFINED CONFIGURATIONS
 - C-only, Nitrifying, Denitrifying (IWA)
 - Denitrifying (COST)
- FIXED PROCESS MODELS & PARAMETERS
 - ASM#1, Takacs
- DEFINED DYNAMIC DISTURBANCES
- DEFINED SIMULATION PROCEDURES
- DEFINED PERFORMANCE ASSESSMENT

CONCLUSION

- BENCHMARKING IS:
 - A valuable tool for the comparison of multi-faceted simulation problems
 - The first step in evaluating the potential impact of particular control strategies
 - A multi-criteria decision making problem